Longest Paths in Planar DAGs in Unambiguous Logspace

نویسندگان

  • Nutan Limaye
  • Meena Mahajan
  • Prajakta Nimbhorkar
چکیده

We present a transformation from longest paths to shortest paths in sub-classes of directed acyclic graphs (DAGs). The transformation needs log-space and oracle access to reachability in the same class of graphs. As a corollary, we obtain our main result: Longest Paths in planar DAGs is in UL ∩ co-UL. The result also extends to toroidal DAGs. Further, we show that Longest Paths in max-unique DAGs where the target node is the unique sink is in UL ∩ co-UL. We show that for planar DAGs with the promise that the number of distinct paths is bounded by a polynomial, counting paths can be done by an unambiguous pushdown automaton equipped with an auxiliary log-space worktape and running in polynomial time. This bound also holds if we want to compute the number of longest paths, or shortest paths, and this number is bounded by a polynomial (irrespective of the total number of paths). Along the way, we show that counting paths in general DAGs can be done by a deterministic pushdown automaton with an auxiliary log-space worktape and running in polynomial time, and hence is in the complexity class LogDCFL, provided the number of paths is bounded by a polynomial and the target node is the only sink.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reachability in K3,3-free and K5-free Graphs is in Unambiguous Logspace

We show that the reachability problem for directed graphs that are either K3,3-free or K5-free is in unambiguous log-space, UL∩ coUL. This significantly extends the result of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar graphs is in UL∩ coUL. Our algorithm decomposes the graphs into biconnected and triconnected components. This gives a tree structure on th...

متن کامل

Reachability in K 3 , 3 - free and K 5 - free Graphs is in Unambiguous

We show that the reachability problem for directed graphs that are either K3,3-free or K5-free is in unambiguous log-space, UL ∩ coUL. This significantly extends the result of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar graphs is in UL ∩ coUL. Our algorithm decomposes the graphs into biconnected and triconnected components. This gives a tree structure on ...

متن کامل

The Space Complexity of k -Tree Isomorphism

We show that isomorphism testing of k-trees is in the class StUSPACE(log n) (strongly unambiguous logspace). This bound follows from a deterministic logspace algorithm that accesses a strongly unambiguous logspace oracle for canonizing k-trees. Further we give a logspace canonization algorithm for k-paths.

متن کامل

Polynomial Min/Max-weighted Reachability is in Unambiguous Log-space

For a graph G(V,E) and a vertex s ∈ V , a weighting scheme (w : E → N) is called a min-unique (resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of minimum(resp. maximum) weight1 from s to v. Instead, if the number of paths of minimum(resp. maximum) weight is bounded by n for some constant c, then the weighting scheme is called a min-poly (resp. max-...

متن کامل

Min/Max-Poly Weighting Schemes and the NL vs UL Problem∗

For a graph G(V,E) (|V | = n) and a vertex s ∈ V , a weighting scheme (w : E → N) is called a min-unique (resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a unique path of minimum (resp. maximum) weight from s to v. Instead, if the number of paths of minimum (resp. maximum) weight is bounded by n for some constant c, then the weighting scheme is called a min-poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009